Structure Cristalline de Sb₂O₃.3SO₃

PAR RENÉ MERCIER, JACQUES DOUGLADE ET JEAN BERNARD

Laboratoire de Chimie-Physique,

Faculté des Sciences et des Techniques de Besançon, 32 rue Mégevand, 25000-Besançon, France

(Reçu le 16 mars 1976, accepté le 7 avril 1976)

The crystal structure of Sb₂O₃. 3SO₃ has been determined by single-crystal X-ray techniques. The crystal is monoclinic, space group P_{2_1}/c ; the unit-cell dimensions are: $a=13\cdot12$, $b=4\cdot75$, $c=17\cdot55$ Å, $\beta=126^{\circ}30'$, Z=4. Final refinement was by least-squares methods on 504 independent reflexions, to an R value of 0.080. The structure consists of infinite ladders parallel to the [010] direction which are built with [SO₄] tetrahedra and [SbO₃] pyramids sharing corners. The three antimony-oxygen bond lengths are found to be greater (2.03, 2.13, 2.22 Å) than in antimony(III) oxide Sb₂O₃ (Sb-O=2.00 Å); a fourth weak bond Sb...O (2.39 Å), between two differents ladders, concurs with van der Waals bonds between oxygen atoms to stabilize the structure.

Le composé Sb_2O_3 . $3SO_3$ ou $Sb_2(SO_4)_3$ a été obtenu par différents auteurs du siècle dernier par action de l'acide sulfurique soit sur Sb₂S₃ (Hensgen, 1885; Metzl, 1906), soit sur l'oxyde d'antimoine(III) Sb₂O₃ (Brandes, 1827; Dexter, 1869; Schultz-Sellack, 1871). Hintermann & Venuto (1968) signalent également que Sb₂O₃.3SO₃ est obtenu dans des solutions saturées de Sb₂O₃ dans H₂SO₄ 18,7 M. Les paramètres cristallographiques des corps obtenus ne sont pas donnés par les auteurs; par ailleurs, les descriptions différentes de l'habitus des cristaux (prismes ou aiguilles) suggèrent qu'il existe vraisemblablement au moins deux variétés allotropiques répondant à cette formule. Nous avons utilisé la méthode de Hintermann & Venuto (1968) et précisé le domaine de concentration en H₂SO₄ permettant d'obtenir ce corps sans ambiguité: on prépare à 200°C, dans des tubes scellés, des solutions contenant de 15 à 20 g Sb₂O₃ l⁻¹ de H₂SO₄ (17–18,7 *M*); à 20°C, il se dépose ensuite des aiguilles incolores très fines. Pour éviter leur hydrolyse, nous avons placé des aiguilles monocristallines ($\emptyset = 0,2 \text{ mm}$) en tubes de Lindemann scellés ensuite à l'abri de la vapeur d'eau, de manière à faire une étude radiocristallographique. La densité, mesurée par pycnométrie dans du xylène est égale à $3,94 \text{ g cm}^{-3}$. Le diagramme de diffraction X de la poudre comporte de très nombreuses raies très fines (Tableau 1).

La maille est monoclinique et contient quatre unités formulaires Sb₂O₃. 3SO₃ (V=881 Å³); le groupe spatial déterminé à partir de clichés réalisés en chambre de Weissenberg et de précession est $P2_1/c$ (n° 14) (Tableau 2). Les paramètres de la maille ont été affinés à partir de 13 raies du spectre de poudre dont l'indexation est certaine (Tableau 1).

L'axe de chaque aiguille est parallèle à l'axe unique b (*Oy*).

La structure a été déterminée à partir d'enregistrements photographiques réalisés par la méthode d'équiinclinaison en chambre de Weissenberg sur cinq strates h0l-h4l; la radiation utilisée est celle émise par un tube à anticathode de Mo ($K\alpha$, $\lambda = 0,7107$ Å). Les intensités

l'ableau	1.	Indexation	du	spectre	de	diffraction	X	de
		poudre	de	Sb ₂ O ₃ .3	SO	3		

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1/L
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	h k l	do (Å)	d_c (Å) (Cu	$K\alpha$, $\lambda = 1,542$ Å)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	10.52	10,574	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	102	8,75	8,735	32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	002	7.10	7,072	13
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	200	5.27	5.287	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	102	4,720	4,726	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	404	4,382	4.368	87
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	110	4,323	4,333	23
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	104	4,190	4,179	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	*304	3,909	3,908	46
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	*212	3,826	3,823	37
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	004	3,550	3,536	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	*300	3,521	3,524	9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	*2 0 2	3,379	3,382	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	*4 0 4	3,222	3,220	23
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	*314	3,014	3,018	6
$ \begin{array}{c} 1 & 0 & 4 \\ 2 & 0 & \overline{6} \\ 2 & 0 & \overline{6} \\ \end{array} \right\} \begin{array}{c} 2,882 & 2,880 & 7 \\ 2,878 & 7 \\ 2,878 & 7 \\ \end{array} \\ \begin{array}{c} *2 & 1 & \overline{5} \\ 2,1 & 2 \\ 2,1 & 2 \\ 2 & 2 \\ 2$	*306	2,914	2,912	14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	104]	1 001	2,880	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	207)	2,002	2,878	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	*2 1 3	2,821	2,818	11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	313	2 761	2,763	9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 1 2 ∫	2,701	2,755	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	*1 1 5	2,687	2,685	45
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*4 1 2	2,633	2,634	38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	302	2,605	2,599	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	*3 1 1	2,553	2,552	9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	*506	2,452	2,454	55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	020	2.376	2,375	41
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	416	_,	2,374	•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$0 2 \frac{1}{1}$	2.340	2,342	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 4 \end{bmatrix}$	_,	2,336	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2,292	2,297	12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2 <u>2</u> J	1 1 1	2,292	7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	* 2 2 2	2,231	2,220	25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{512}{408}$	2,187	2,109	35
2,162 2,160 21 2,17 2,162 2,161 10	4001		2,104	21
	220	2,162	2,100	21
7 10 10			2,101	10
$50\frac{1}{8}$ 2,102 2,100	502	2,102	2,101	10
$3 1 \overline{8}$ 1981 24	3181		1 981	24
1,2,3 $1,981$ $1,980$	$\frac{1}{123}$	1,981	1,980	
6 0 8 1,956 1,954 13	608	1,956	1,954	13

* Raies utilisées pour affiner les paramètres de la maille.

Tableau 2. Constantes cristallographiques de Sb₂O₃.3SO₃

Système: monoclinique	Groupe spatial:
$a = 13,12 \pm 0,02$ Å	$P2_{1}/c$ ou C_{2h}^{5}
$b = 4,750 \pm 0,005$	$D_m = 3,94 \text{ g cm}^{-3}$
$c = 17,55 \pm 0,03$	$D_c = 4,01$
$\beta = 126^{\circ}30' \pm 15'$	Z=4

de 504 taches correspondant à des refléxions indépendantes (sin θ/λ compris entre 0,071 et 0,68) ont été mesurées à l'aide d'un microdensitomètre et corrigées par le facteur de Lorentz-polarisation.

Compte tenu de la multiplicité des sites en position générale 4(e), il faut, pour connaître la structure, déterminer 17 positions atomiques indépendantes dans le quart de maille (2Sb, 3S et 12O).

Un jeu de deux positions convenant aux atomes Sb a été déterminé en étudiant la déconvolution de la fonction de Patterson tridimensionnelle P(u, v, w). L'affinement de ces positions, réalisé par une méthode des moindres carrés mise au point par Saux & Galy (1967, non publiée) conduit au facteur de reliabilité R=0.33. La structure a ensuite été déterminée par la méthode classique de l'atome lourd.

Une première synthèse de Fourier différence, utilisant les deux atomes de Sb permet de placer trois atomes de soufre en position générale (R=0,23), une deuxième série différence permettant de localiser les 12 atomes d'oxygène.

L'affinement des paramètres de position de ces 17 atomes (Tableau 3) a permis d'abaisser le facteur de

reliabilité $R = \sum |F_o - |F_c|| / \sum F_o$ à 0,105; les facteurs d'agitation thermique isotropes B ont été atteints directement par un affinement qui conduit à R=0.080.*

* La liste des facteurs de structure a été déposée au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 31806: 7 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, Angleterre.

Tableau 3. Coordonnées réduites des atomes dans Sb₂O₃.3SO₃

Sb(i), S(i): l'indice *i* indique le type d'atome. O(ij): l'indice *i* indique le type d'atome de soufre auquel est lié l'atome d'oxygène, l'indice j désigne le type d'oxygène.

	х	У	Z	B (Å ²)
Sb(1)	0,3561 (2)	0,4113 (1)	0,2857 (2)	0,59
Sb(2)	0,1107 (2)	0,2063 (1)	0,4379 (3)	0,60
S(1)	0,5558 (3)	0,9359 (1)	0,3922(3)	0,62
S(2)	0,1722 (2)	0,6694 (2)	0,3234 (3)	0,69
S(3)	0,1662 (3)	0,6352 (2)	0,6120 (4)	0,67
O(11)	0,5562 (5)	0,0535 (2)	0,3158 (6)	0,78
O(12)	0,5214 (7)	0,6257 (3)	0,3699 (7)	0,85
O(13)	0,6753 (8)	0,9555 (3)	0,4800 (7)	1,29
O(14)	0,4730 (6)	0,1028 (2)	0,4025 (7)	0,65
O(21)	0,0907 (5)	0,5533 (3)	0,2317 (6)	0,94
O(22)	0,3002 (4)	0,5580 (2)	0,3681 (5)	0,79
O(23)	0,1402 (5)	0,5731 (3)	0,3840 (6)	0,85
O(24)	0,1730 (5)	0,9837 (2)	0,3283 (7)	0,63
O(31)	0,0462 (6)	0,5157 (3)	0,5960 (6)	1,00
O(32)	0,1381 (5)	0,9368 (2)	0,5740 (7)	0,96
O(33)	0,2000 (5)	0,4343 (2)	0,5594 (6)	0,82
O(34)	0,2713 (6)	0,6450 (2)	0,7090 (7)	0,80

Fig. 1. Projection orthogonale d'une échelle sur le plan (201). L'intervalle entre les barreaux de l'échelle est égal à b. Ces échelles possèdent des centres de symétrie situés aux centres des cycles octogonaux (forme chaise).

Les facteurs de diffusion utilisés pour les ions Sb^{3+} , O^{2-} et l'atome S ont été relevés ou interpolés dans les tables publiées par McMaster, Kerr del Grande, Mallet & Hubbel (1969).

Nous n'avons pas effectué de correction d'absorption compte tenu du faible coefficient d'absorption du cristal ($\mu = 70 \text{ cm}^{-1}$, $\mu R = 0,7$).

Description de la structure

 Sb_2O_3 . $3SO_3$ est formé par des échelles infinies parallèles à l'axe des aiguilles *Oy*. Chaque échelle (Fig. 1) est composée de deux montants constitués par des enchaînements -Sb(1)-O(12)-S(1)-O(14)-Sb(1)- reliés entre eux par des barreaux complexes dont la partie centrale est un cycle octogonal ayant un centre de symétrie.

Les barreaux sont décalés les uns des autres par une translation suivant **b**.

La projection de la structure sur le plan (010) (Fig. 2) met en évidence la disposition relative des échelles les unes vis à vis des autres. Ces échelles infinies sont reliées entre elles par des liaisons de type van der Waals entre atomes d'oxygène (non représentées sur la Fig. 2) et par des interactions faibles $Sb \cdots O$ (représentées par des tirets). Il y a deux sortes d'atomes d'antimoine: les atomes Sb(1) font partie du squelette des spirales et forment la jonction entre le barreau et le montant de l'échelle, les atomes Sb(2) sont sur les cycles.

Dans la mesure où l'on considère que l'antimoine est trivalent, on peut remarquer que chacun d'eux est

Tableau 4. Distances interatomiques (Å) et angles de liaisons (°) dans les tétraèdres SO₄

S(1)O ₄		S(2)O	4	S(3)C	S(3)O ₄		
Distances	interator	niques (écart-t	ype 0,005	5Å)			
S-O ₁	1,454	$S-O_1$	1,411	$S-O_1$	1,534		
S-O ₂	1,524	S-O ₂	1,466	S-O ₂	1,532		
S-O3	1,402	S-O3	1,431	S-O3	1,564		
S-O4	1,441	S-O4	1,497	S-O4	1,417		
$O_1 - O_2$	2,397	$O_1 - O_2$	2,337	$O_1 - O_2$	2,483		
$O_1 - O_3$	2,367	$O_1 - O_3$	2,347	$O_1 - O_3$	2,482		
$O_1 - O_4$	2,354	$O_1 - O_4$	2,460	$O_1 - O_4$	2,463		
$O_2 - O_3$	2,372	$O_2 - O_3$	2,277	$O_2 - O_3$	2,584		
$O_2 - O_4$	2,512	$O_2 - O_4$	2,369	$O_2 - O_4$	2,533		
O ₃ -O ₄	2,256	O_3-O_4	2,335	O ₃ –O ₄	2,418		
Angles de liaisons (incertitude 1°)							
$O_1 - S - O_2$	107,2	$O_1 - S - O_2$	108,6	$O_1 - S - O_2$	108,2		
$O_1 - S - O_3$	111,9	$O_1 - S - O_3$	111,3	$O_1 - S - O_3$	106,5		
$O_1 - S - O_4$	108,8	$O_1 - S - O_4$	115,5	$O_1 - S - O_4$	113,1		
$O_2 - S - O_3$	108,2	$O_2 - S - O_3$	103,6	$O_2 - S - O_3$	113,1		
$O_2 - S - O_4$	115,8	$O_2 - S - O_4$	106,2	$O_2 - S - O_4$	118,3		
$O_3 - S - O_4$	105,2	$O_3 - S - O_4$	105,8	$O_3 - S - O_4$	108,3		

Fig. 2. Projection orthogonale de la structure sur le plan (010). Les cotes des atomes sont exprimées en millième de b; les atomes cotés correspondent aux coordonnées réduites figurant dans le Tableau 3.

entouré par trois groupements SO_4 et se trouve donc au sommet d'une pyramide SbO_3 comme dans les oxydes Sb_2O_3 .

Les atomes de S sont situés au voisinage du centre de tétraèdres SO_4 légèrement déformés (Tableau 4).

Il y a lieu de considérer trois types de groupements 'sulfate': (1) les groupes -O-SO₂-O- des spirales, bâtis autour de S(1), ont deux sommets communs avec les pyramides $Sb(1)O_3$, O(12) et O(14); les atomes O(11)et O(13) sont uniquement reliés au soufre; (2) les groupes -O-SO₂-O- centrés sur l'atome S(3) sont sur les cycles centraux des barreaux de l'échelle. Chaque cvcle possède la forme chaise (Fig. 1) et est constitué par l'assemblage de deux tétraèdres -SO₄- avec deux pyramides $Sb(2)O_3$ par certains sommets; les atomes d'oxygène communs sont O(31) et O(33); les atomes O(32) et O(34) sont uniquement reliés au soufre; (3) les groupes $-O-SO_2-O$ autour de S(2) sont intermédiaires entre le cycle et la spirale; ce tétraèdre sert donc de pont entre les deux pyramides $Sb(1)O_3$ et $Sb(2)O_3$; ce groupement possède aussi deux atomes d'oxygène 'libres'.

Discussion

Il est intéressant de comparer cette structure originale de Sb_2O_3 . $3SO_3$ avec celles des deux variétés cristallines de Sb_2O_3 et celle de Sb_2O_3 . $2SO_3$ que nous avons déterminée récemment (Mercier, Douglade & Théobald, 1975), afin de préciser la nature et le rôle des liaisons Sb-O. Les caractéristiques de l'environnement de Sb dans ces différents corps sont rassemblées dans le Tableau 5.

La paire d'électrons E non liée de Sb^{III} est située en position apicale à l'extérieur de la pyramide SbO₃ dans les oxydes Sb₂O₃ ainsi que l'a montré Svensson (1974, 1975); elle occupe un volume voisin de celui d'un ion oxygène (16–17 Å³) de sorte que les autres atomes d'oxygène se situent à une distance de Sb de l'ordre de 2,5 à 3 Å, donc très supérieure aux longueurs des trois liaisons de valence de la pyramide considérée (2,0 Å). Considérons l'environnement de Sb dans Sb_2O_3 cubique formé de molécules Sb_4O_6 ; Sb est sur un site C_{3v} et est entouré par trois atomes d'oxygène proches

Fig. 3. Environnement de Sb. (a) Sb₄O₆ cristallisé. Les trois liaisons intermoléculaires Sb...O, en position étoilée, sont repoussées de l'axe C₃ de la pyramide par la paire E d'électrons de Sb (l'angle O...Sb...O est égal à 115°). (b) Sb₂O₃.3SO₃. Les atomes Sb(1) et Sb(2) possèdent un environnement semblable à celui existant dans Sb₄O₆. Une des trois liaisons faibles est nettement plus courte que dans Sb₄O₆; cette '4° liaison' Sb...O (2,39 Å) assure la cohésion entre les échelles.

		Sb ₂ O ^b ₃	Sb ₂ O ^c ₃				
Sb(1)		Sb(2)		$Sb_2O_3.2SO_3^a$	Valentinite	e Sénarmor	ntite Commentaires
Distances Sb-O (éca	rt-type 0,005	Å)					
Sb(1)-O(12) Sb(1)-O(22) Sb(1)-O(14)	2,028 2,089 2,227	Sb(2)-O(33) Sb(2)-O(23) Sb(2)-O(31)	2,030 2,126 2,210	1,921 2,108 2,171	1,977 2,019 2,023	1,977 1,977 1,977	$\begin{cases} Pyramides SbO_3 \\ 4^\circ \text{ ligiton faible dans} \end{cases}$
Sb(1)-O ¹ (34)	2,392	Sb(2)-O ⁱ (13)	2,395	• • •		• • • •	$\begin{cases} 4 \text{ marson ratio c dans} \\ \text{Sb}_2\text{O}_3.3\text{SO}_3 \end{cases}$
Sb(1)-O(11) Sb(1)-O ¹¹ (34)	2,723 2,870	Sb(2)–O ¹¹ (32) Sb(2)–O ¹¹ (24)	2,540 2,710	2,50 2,55 3,16	2,518 2,619	2,918 2,918 2,918	Liaisons Sb····O très faibles
Angles O-Sb-O (ince	ertitude 1°)						
$\begin{array}{l} O(12)-Sb(1)-O(14)\\ O(12)-Sb(1)-O(22)\\ O(14)-Sb(1)-O(22)\\ O(12)-Sb(1)-O^{1}(34)\\ O(22)-Sb(1)-O^{1}(34)\\ O(14)-Sb(1)-O^{1}(34) \end{array}$	73,9 89,6 85,3 84,5 81,9 159,2	$\begin{array}{l} O(23)-Sb(2)-O(31)\\ O(23)-Sb(2)-O(33)\\ O(31)-Sb(2)-O(33)\\ O(23)-Sb(2)-O'(13)\\ O(33)-Sb(2)-O'(13)\\ O(31)-Sb(2)-O'(13)\\ O(31)-Sb(2)-O'(13) \end{array}$	77,1 83,4 80,0 94,2 78,6 157,7	79,8 89,9 91,7	79,8 91,9 98,9	95,9 95,9 95,9	 Pyramides SbO₃ Angles entre la 4° liaison faible et les 3 liaisons fortes de la pyramide SbO₃

Tableau 5. Distances interatomiques (Å) et angles de liaisons (°)

Références: (a) Mercier, Douglade & Théobald (1975). (b) Svensson (1974). (c) Svensson (1975).

(trois arêtes Sb-O de la pyramide SbO₃; Sb-O= 1,977 Å; O-Sb-O=95,9°) et par trois O très éloignés appartenant à d'autres molécules Sb₄O₆ (Sb···O= 2,918 Å). Comme on peut le voir sur la Fig. 3(*a*), les trois liaisons courtes et les trois liaisons longues sont en position étoilée (configuration de type octaédrique); la paire d'électrons *E*, par son effet stéréochimique, repousse ainsi les atomes d'oxygène faiblement liés de la direction de l'axe de la pyramide de telle sorte que le trièdre formé par les trois liaisons longues est très ouvert (O···Sb···O=115°).

Dans Sb_2O_3 orthorhombique (Svensson, 1974), il est vraisemblable que l'environnement de Sb est comparable (en particulier la pyramide formée par les trois liaisons covalentes Sb–O; Sb–O 2,0 Å) bien que l'auteur n'ait fait figurer dans son tableau que deux liaisons faibles (2,518–2,619 Å).

Dans Sb_2O_3 . 2SO₃, on retrouve une pyramide formée par trois liaisons fortes que l'on peut subdiviser en une liaison très courte (1,93 Å) dans le groupement Sb-O-Sb et deux liaisons un peu plus longues (2,11–2,17 Å) qui peuvent être analysées comme étant à dominante ionique; on retrouve également trois liaisons faibles en position étoilée par rapport aux précédentes, leurs longueurs étant assez différentes.

Dans Sb₂O₃. 3SO₃, les deux atomes Sb(1) et Sb(2) possèdent un environnement comparable avec trois liaisons Sb-O (2,03; 2,13; 2,23 Å) relativement plus longues que celles de Sb₂O₃. Ces trois liaisons ont une longueur moyenne (2,13 Å) qui correspond sensiblement à la somme des rayons ioniques de Sb³⁺ et O²⁻: $r_{Sb3+} + r_{O2-} = 2,15$ Å ($r_{Sb3+} = 0,77$; $r_{O2-} = 1,38$ Å) (Shannon & Prewitt, 1969). Ces liaisons possèdent donc un caractère ionique plus marqué que dans Sb₂O₃. On peut aussi rapprocher l'environnement de Sb de celui décrit pour Sb₄O₆ en imaginant que la paire d'électrons *E* joue un rôle stéréochimique analogue [Fig. 3(*b*)]: les trois liaisons faibles sont aussi en position étoilée par rapport aux liaisons fortes et leurs longueurs ont subi des midifications telles que, en particulier, il existe dans Sb_2O_3 . $3SO_3$ une '4° liaison' plus faible que les trois liaisons de valence mais néanmoins relativement plus forte que les liaisons faibles de Sb_2O_3 et Sb_2O_3 . $2SO_3$ puisque sa longueur est voisine de 2.39 Å.

Cette '4° liaison' Sb(1)····O(34) et Sb(2)····O(13) intervient entre des 'echelles' voisines (en tirets sur la Fig. 2); elle contribue certainement à assurer la cohésion de la structure par des 'contacts' cycle-spirale et inversement et renforcer ainsi la contribution des liaisons de type van der Waals entre atomes d'oxygène d'échelles voisines (O···O 2,8–3,0 Å; rayon de van der Waals de O=1,4 Å).

Références

- BRANDES, R. (1827). Arch. Pharm. 21 (2), 156-162.
- DEXTER, W. P. (1869). J. prakt. Chem. 106, 134-137.
- HENSGEN, C. (1885). Rec. Trav. Chim. Pays-Bas, 4, 401-413.
- HINTERMANN, H. E. & VENUTO, C. J. (1968). J. Electrochem. Soc. 23, 10–13.
- McMaster, W. H., Kerr Del Grande, N., Mallet, J. H. & HUBBEL, J. H. (1969). Compilation of X-ray Cross Sections Natl. Bur. Stand. UCRL-50174 Sec. II, Rev. 1 (TID 4500 UC-34 Physics).
- MERCIER, R., DOUGLADE, J. & THÉOBALD, F. (1975). Acta Cryst. B31, 2081–2085.
- METZL, S. (1906). Z. anorg. Chem. 48, 140-161.
- SCHULTZ-SELLACK, C. (1871). Ber. dtsch. chem. Ges. 4 (13), 109-114.
- SHANNON, R. D. & PREWITT, C. T. (1969). Acta Cryst. B25, 925–946.
- SVENSSON, C. (1974). Acta Cryst. B30, 458-461.
- SVENSSON, C. (1975). Acta Cryst. B31, 2016-2018.